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a b s t r a c t

Future power systems require a change from a ‘‘vertical’’ to a ‘‘horizontal’’ structure, inwhich the customer
plays a central role. As buildings represent a substantial aggregation of energy consumption, the inter-
twined operation of the future power grid and the built environment is crucial to achieve energy efficiency
and sustainable goals. This transition towards a so-called smart grid (SG) requires advanced building
energy management systems (BEMS) to cope with the highly complex interaction between two envi-
ronments. This paper proposes an agent-based approach to optimize the inter-operation of the SG–BEMS
framework. Furthermore a computational intelligence technique, i.e. Particle Swarm Optimization (PSO),
is used to maximize both comfort and energy efficiency. Numerical results from an integrated simulation
show that the operation of the building can be dynamically changed to support the voltage control of the
local power grid, without jeopardizing the building main function, i.e. comfort provision.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Being responsible for about one-third of the energy consumed
in cities [1], commercial and industrial buildings play a central role
in the emerging energy supply chain by offering their flexibility
of energy use. Through Demand Response (DR) programs, opera-
tion of buildingswith a proper EnergyManagement System (BEMS)
can improve the performance of electric power grid, reduce invest-
ment costs, and increase Renewable Energy Sources (RES) pene-
tration, without jeopardizing the demand side activities. However,
there is a lack of functional interaction between Smart Grid and
Building Energy Management System (SG–BEMS) to fully invoke
flexibility from the built environment to achieve energy efficiency
and sustainability goals.

Several attempts have beenmade to enable the inter-operation
of these highly complex systems. However, buildings and the
power grid have been treated as independent and unique control
systems, operated based on their own information while oversim-
plifying interaction from the other. For instance, a model for load
shifting has been developed from the SG’s perspective with a DR
solution while the building thermal capacity is simplified [2]. On
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the contrary, a model for the smart operation of Heat, Ventila-
tion and Air Conditioning (HVAC) system is presented to optimize
the system’s energy efficiency with an abstraction of the power
grid [3]. Thus, there is a clear need to have a comprehensive in-
tegration framework to fully address a wide range of variables in
different physical environments, on all time scales of the inter-
operation of the SG–BEMS [4].

To cope with the complexity of this integration framework, a
shift is evident from a centralized energy management systems
to a decentralized structure with the introduction of computa-
tional and distributed intelligence. By dividing the general control
problem into a number of smaller control areas, distributed intel-
ligence reduces the control burden, while improving the flexibil-
ity and efficiency of the control system [5]. For instance, in [6], a
distributed control strategy is used to integrate Distributed Energy
Resources (DERs) in the built environment. In [7], a distributed con-
trol methodology to optimize exchanged power flow and energy
among smart buildings by means of the multi-traveling salesmen
problem optimizationmethod is proposed. This tendency based on
a bottom-up architecture can invoke flexibility from different lev-
els of the built environment towards the SG. Throughout the liter-
ature, one of the most popular decentralized control approaches is
based on Multi-Agent Systems (MAS), which is now being applied
in awide range of applications in the power systems, e.g. condition
monitoring, system restoration, market simulation, network con-
trol and automation [8,9]. MAS is also widely studied in the area of
building automation, building energy management, and building
control and operation [10–14].

http://dx.doi.org/10.1016/j.segan.2015.03.003
http://www.elsevier.com/locate/segan
http://www.elsevier.com/locate/segan
http://crossmark.crossref.org/dialog/?doi=10.1016/j.segan.2015.03.003&domain=pdf
mailto:l.a.hurtado.munoz@tue.nl
mailto:p.nguyen.hong@tue.nl
mailto:w.l.kling@tue.nl
http://dx.doi.org/10.1016/j.segan.2015.03.003


L.A. Hurtado et al. / Sustainable Energy, Grids and Networks 2 (2015) 32–40 33
Furthermore, advanced optimization methods are required to
guarantee a global optimal solution, maximizing the welfare of
both the building and the power grid. For this decision-making
step, the research trend seems to be moving away from determin-
istic gradient based optimization methods, e.g. Newton–Raphson,
to stochastic ones, e.g. Particle Swarm Optimization (PSO), along
with the increasing availability of data measurements. Currently,
stochastic optimization methods such as PSO have been utilized
in a wide range of power grid operation and control applications
[15–18]. However, the application of advanced optimization tech-
niques on the customers side to reveal their benefits in the smart
grid environment is still limited [19].We researched onmaking use
of the building thermal buffers and storage systems to dynamically
adapt with the power grid requirements, without significantly af-
fecting the building’s comfort levels [20].

This paper proposes a SG–BEMS integration framework includ-
ing a MAS based control scheme to optimize both comfort and en-
ergy efficiency. Developed hierarchical agent structure will allow
lower level agents abstracting the information of their immediate
environment into the form of single value information blocks for
the higher level agents. In this way, data management complexity
is reduced at each agent level, in order to exploit the demand flexi-
bility potential within the built environment to support the power
grid with voltage control service. A PSO optimizer is proposed to
improve the MAS’s capability in exploiting the building’s flexibil-
ity for the SG. Finally, the performance of the MAS based SG–BEMS
platform is tested in a Low Voltage (LV) test feeder, and the sys-
tem’s potential for voltage control is demonstrated.

The remainder of this paper is divided into five sections. Sec-
tion 2 presents the SG–BEMS framework, as well as the problem
description for the integrated system. Section 3 formulates the
optimization problem and introduces PSO as a suitable optimiza-
tion technique. Section 4 describes the implementation of the dis-
tributed control methodology. Section 5 describes the test systems
used and the simulation results obtained. Finally, Section 6 sum-
marizes and presents conclusions from this study.

2. SG–BEMS framework

Development of an intertwined operation of the SG and BEMS
needs a common framework to address critical involved control
blocks for both two domains. This SG–BEMS framework is based
on a reference of the Smart Grid Architecture Model (SGAM) [21],
with an extension onto the building consumer domain, as shown
in Fig. 1. Exchanging information within and between the two
domains allows each system to operate towards its own goal, while
reducing unnecessary information exchange. However, this inter-
operation framework requires a common ontology, to allow the
exchanged messages to be understandable by both domains.

Both the power grid, i.e. the distribution grid, and building
domains are formed by four different layers in this framework [21].
The ‘‘Operation’’ layer, which is linked directly to the SG–BEMS
interaction, hosts the power system control, e.g. Distribution
Management Systems (DMS), the Energy Management Systems
(EMS), and the building controls, e.g. the centralized management
systems (CMS), zone management system (ZMS), and the device
management system (dMS). These systems have the main purpose
of monitoring and controlling the distribution system equipment
and the building equipment based on the information available. At
the ‘‘Field’’ layer, the equipment to monitor, control and protect
the power system and the building installation can be found. Such
equipment are intelligent devices with communication enabled
controller to monitor and control the automated devices.

In the following subsections, the two domains in the SG–BEMS
frameworkwill be described inmore detail: their context, ultimate
goals for each system operation, as well as their constraints.
Fig. 1. SG–BEMS framework domains.

2.1. Distribution grid domain

The electric distribution grid is operated by the distribution sys-
tem operator. Its main objective is to maintain reliable power sup-
ply to the customers. As the proliferation of RES and DER becomes
larger, their intermittent anduncontrollable nature causes not only
system balance issues, but also problems for the reliable opera-
tion of the distribution grid. Conventionally, the functioning block
of distribution grid control must take place to support (a) preven-
tion of overloading of assets; (b) regulation of voltage magnitude;
(c) maintenance of the power quality and security.

Among them, voltage regulation is one of the biggest concerns
of distribution system operators. Due to the high number and di-
versity of loads, voltage variations are higher in the LV networks
than in the medium or high voltage networks. These voltage varia-
tions,1u [p.u.], over a network feeder are formulated as a function
of the active power, P[W ], the reactive power, Q [var], and the line
impedance Z[Ω] = R+jX , as described by the following equation:

1u =
(P · R + Q · X) + j(P · X + Q · R)

ubase
, (1)

where ubase is the base or reference voltage, e.g. ubase = 240 V for
LV networks.

As shown in the equation, the voltage variation depends not
only on the power flow in the feeder but also on the network
impedance. The X/R ratio will define whether it is the reactive or
active powerwhich has a greater impact on the voltage level. In the
LV network, the impedance is mostly resistive, which means that
active power control has a bigger impact on the voltage variations
along the feeder.

2.2. Building consumer domain

The two main aspects of the building consumer domain are
comfort management and energy consumption. In buildings, the
central objective is to provide the occupants with a comfortable
environment. About 50% of the total electrical energy consumed
is used for comfort management [22]. This strong correlation is
crucial to reveal flexibility from the built environment to offer to
the SG.

The following subsections describe more in detail these two
aspects of the building consumer domain.



34 L.A. Hurtado et al. / Sustainable Energy, Grids and Networks 2 (2015) 32–40
2.2.1. Comfort formulation
Comfort is a complex and subjective human perception, which

varies according to each person and each particular environmental
context. Traditionally, it is controlled by a combination of a cen-
tralized management system and human interventions, e.g. lights
in local zones. Different standards have been developed to guaran-
tee comfort levels. For instance, ASHRAE55 and ISO7730, for ther-
mal comfort; ISO8995−1, for visual comfort; and ASHRAE62.1, for
indoor air quality.

As a building consists of a high number of components differing
in characteristics and operation times, the building is usually
divided intomultiple zones, e.g. office rooms, common areas, halls,
floors, etc. Nonetheless, each zone has a particular energy demand
and control variables.

In this paper, comfort is conceptualized as a function of thermal
comfort (i.e. temperature) [11] and extended to air quality (i.e. hu-
midity).1 Both aremodeled through aGaussian function represent-
ing the degree of satisfaction,with the average comfort value as the
mean (µ) and a standard deviation (σ ). This guarantees the oper-
ation of the system in a range instead of a single value, which is
closer to the subjective nature of comfort perception, as expressed
in the following equation:

comf = (ω)e


−(T−µT )2

2σ2
T


  
Thermal comfort

+ (1 − ω)e


−(RH−µRH )2

2σ2
RH


  

Air quality comfort

, (2)

where ω is a weight factor, T is the temperature, µT is the mean
temperature, σT is the standard deviation for the thermal comfort,
RH is the relative humidity, µRH is the mean humidity, and σRH is
the standard deviation for air quality comfort.

The first part in (2) represents the thermal comfort, i.e. the
change in time of the temperature in a zone. This change can be
modeled applying the energy conservation principle, as shown in
the next equation:

dT (t)
dt

=
1

M cp
(Qin + QHVAC + Qheater + Qloss) , (3)

where,M is mass of the volume of air; cp is the specific heat capac-
ity of air; Qin represents the internal gains due to the heat gener-
ation rate per person2; QHVAC represents the heat contribution by
the HVAC system operation as a function of the volumetric supply
air flow rate, i.e. v̇s [23]. Due to the high costs involved in supplying
the heat demand only by an air system, i.e. the HVAC system, a heat
pump is added as the main heating source in this research. There-
fore,Qheater represents the heat contribution of the heat pump used
as a function of thewater flow, i.e. v̇s,h. Finally,Qloss is used tomodel
the heat losses through the envelope of the zone [24].

The second part in (2) represents the zone’s relative humidity.
From the energy conservation principle, the dynamic model of
change of enthalpy in the air is given as follows [23]:

dRh(t)
dt

=
1
M

(v̇sρa (RHs − RH) + Mo) , (4)

where, ρa the air density, RHs is the supply air enthalpy, RH is the
air enthalpy in the room, i.e. humidity ratio, andMo is theMoisture
load.

The CO2 concentration levels are treated as a constraint of
the system. Similarly to the dynamic model of temperature and
humidity, the change in time of the CO2 levels is given by [25]:

dΦ(t)
dt

=
1
V


v̇s (Φs − Φ) + NΦgen


, (5)

1 The carbon dioxide is considered as a constraint of the optimization problem.
2 The solar gains are neglected in this work.
where V is the zone’s air volume, Φ is the CO2 concentration at
time t ,Φs is the CO2 concentration in the supply air, andΦgen is the
CO2 production rate per person. The supply air’s concentration is a
function of the supply air flow and the return air flow v̇r , as follows:

Φs =
(v̇s − v̇r)Φout + v̇rΦ

v̇s
. (6)

2.2.2. Energy formulation
This paper categories energy consumption systems in the

building into centralized and decentralized ones. Energy demand
of a centralized system corresponds to the energy consumed by
the comfort systems including the heat pump for heating purposes,
Eheater , and the HVAC for air quality and supplementary heat, EHVAC .
Whereas, energy demand of a decentralized system corresponds to
individual systems in local zones, Ei, e.g. lights and computers.

The total energy consumption of a building is expressed in the
following equation:

Etotal = EHVAC + Eheater  
centralized

+

N
i=1

Ei  
decentralized

. (7)

The energy consumed by a typical HVAC system is a function of
the supplied air temperature and flow rate. In turn, air temperature
and flow rates are functions of the individual systems that form the
HVAC system as follows:

EHVAC = Efan,s + Efan,r + Ehcoil + Eccoil, (8)

where, Efan,s and Efan,r are the energy consumed by the supply
and return fans, which are proportional to v̇s and v̇r [26]. The
energy consumed by the heating coil, i.e. Ehcoil, and the energy
consumed by the cooling coil, i.e. Eccoil, are a function of the air flow
rates (supply and return), the difference in the indoor and outdoor
temperatures, and their respective efficiencies.

The energy consumed by the heat pump is a function the
required heat power and the coefficient of performance, COP , of
the machine. The required heat is the energy used to compensate
for the thermal losses, and it is proportional to the volumetric flow
of water through the system, v̇s,h, the temperature of the supplied
water, Ts,w , and the zone temperature, Tz . Finally, the COP describes
the ratio between the useful heat produced and the work input.

Eheater =
v̇s,hρwcp,w(Ts,w − Tz)

COP
, (9)

where, ρw is the water density and cp,w is the heat capacity of
water.

3. Optimization problem formulation

The SG–BEMS framework involves multiple objectives which
might be conflicting, i.e. comfort maximization and energy
minimization, and a consideration to enable grid support services.
The first objective relates to the problem described by (2), with
comf ∈ [0 , 1]. Thus, themaximization of comfort can be rewritten
as the minimization of discomfort. The second objective is the
minimization of the energy consumed in the building. In this work,
we limit the energy optimization problem to the minimization of
the energy consumed by the comfort systems. These two objective
functions are represented by the following equations:

f1(x) = discomf = 1 − comf , (10)
f2(x) = Etotal = EHVAC + Eheater , (11)

where x is a solution vector formed by the thermal and air quality
comfort control parameters, i.e. v̇s, v̇s,h and v̇r .
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In order to support the grid without jeopardizing comfort pro-
vision, the SG–BEMS inter-operation needs to handle both opti-
mization problems in (10) and (11) simultaneously under optimal
conditions for the distribution network. Therefore, the optimiza-
tion problem can be rewritten as follows:

Minimize
f (x) = (f1(x), f2(x)). (12)

Subject to
ΦCO2(t) ≤ Φmax (13)

comf ≥ comf min (14)

umin ≤ u(t) ≤ umax, (15)
whereΦCO2 andΦmax are CO2 levels at instant t and at itsmaximum
comfort, and comf min is the minimum comfort level acceptable.
The first two constraints are used to not allow the comfort
satisfaction fall out of the defined comfort ranges at all times. The
last constraint aims to ensure that the voltage magnitude at the
connection point stays within the allowed limits.

As the optimization objectives (10) and (11) are two different
functions, it is a challenge to find a single optimal solution for the
optimization problem in (12). Pareto-optimal solutions must be
found to represent the best trade-off and/or the best compromise
by using different approaches [27]. Here, theweighted aggregation
method is used to aggregate all the objectives of the problem into
a single one through a weighted combination. Thus, (12) can be
rewritten as:
Wf1(x) + (1 − W )σ f2(x), (16)
whereW is a non-negative weight and σ is a normalization factor
that allows the two objectives to be treated equally. The main
advantage of this method is that it allows using a single objective
algorithm and turning the weight W to adjust dynamically the
important role of either f1(x) or f2(x). However, it requires the
algorithm to be applied repeatedly to find the desirable number
of non-dominated solutions.

As this problem includes both non-linear and linear functions,
we used PSO as a suitable technique for tackling the optimization
problem, as it is known to solve large-scale non-linear optimization
problems. Additionally, it has a faster convergence than traditional
methods because of being a free-gradient optimization method.
Compared tomore recent computational intelligence-basedmeth-
ods, e.g. genetic algorithm, PSO is also easier to implement, with
more effectivememory usage and fewer parameters to adjust [15].

3.1. Particle swarm optimization

PSO has been proven to be an alternative solution to deal with
the non-linear and non-stationary systems with noise and uncer-
tainties. PSO is a stochastic-based optimizationmethod that has its
roots in artificial life, social psychology, and computer science [28].
It uses a population of i particles to search for suitable solutions
over a hyperspace, where i is a positive integer. In each iteration k,
the particles find a new solution xk+1

i = {v̇s, v̇r , v̇s,h}, by stochasti-
cally updating their flying trajectories, i.e. position xi and velocity
vi. This update process is based on the historical data available from
the swarm. Every time, the best solution is found for each particle,
i.e. pki , and a new leader, the best particle of the swarm, is selected,
i.e. pkg . This is done until either certain conditions are met or the
maximum number of iterations, i.e. kmax, has been reached. This
process is described by the following rules [15,28]:

vk+1
i = uvk

i + φ1rand1 · (pki − xki ) + φ2rand2 · (pkg + xki ), (17)

xk+1
i = xki + vk+1

i , (18)

u = umax −
umax − umin

kmax
k (19)
Fig. 2. SG–BEMS agent architecture diagram.

where, u is an inertiaweight used to enhance the searching process
by controlling the exploration of the search space,3 and described
by (19); φ1 and φ2 are two positive learning constants, which rep-
resent the learning ability to fly towards the particle’s best posi-
tion and to the swarm leader, respectively4; rand1 and rand2 are
two random numbers with uniform distribution in the range [01];
pki is the best position the particle i has achieved based on its own
experience; pkg is the global best position based on overall swarm’s
experience; umax and umin are the maximum and minimum inertia
values, respectively.

4. SG–BEMS agent structure

As aforementioned, the SG–BEMS inter-operation includes cen-
tralized and decentralized energy management systems with
highly complex tasks. To deal with this challenge, computational
and distributed intelligence has been highlighted as a suitable way
to monitor and control the inter-operating energy systems, while
improving reliability, flexibility and system efficiency. One of the
most popular decentralized control approaches is agent based con-
trol, which is now being applied in a wide range of applications in
the power systems and building automation. The agent’s capabil-
ity to tackle complex problems, based on cooperation, coordina-
tion andnegotiation, has been revealed in different researchworks,
e.g. in [8,29].

In this paper, a dual agent-based control system has been
developed to address the inter-operation of both the distribution
grid and the building. This platform includes two hierarchical
systems: MAS-SG and MAS-BEMS, as illustrated in Fig. 2.

The MAS-SG system is represented by ‘‘feeder’’ agents to moni-
tor continuously the voltage profile of the LV feeder, and by a ‘‘dis-
tribution’’ agent to monitor and control the distribution network
operation. Based on the current status of the voltage, the feeder
agent can create a request of support for the different flexible loads,
i.e. smart buildings. Moreover, based on the general distribution
grid information, the distribution agent can create request of sup-
port for the different feeder agents.

The MAS-BEMS is formed by three hierarchical management
levels according to the building structure:

3 A higher value in the initial steps, e.g. 0.9, allows the free movement of the
particles. Once the optimal region is found, this value can be decreased, e.g. 0.4,
to narrow the search.
4 By changing these parameters, the responsiveness of the particle is controlled.

By increasing these constants, the oscillations around the optimal point increase
becoming unstable for values higher than 2.
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Fig. 3. Voltage support procedure flow chart.

Fig. 4. LV test feeder diagram.

• BEMS agent: It has the highest level in BEMS and takes charge
of solving the optimization problem while being the link to the
distribution network. This agent is able to accept and prioritize
requests made by agents and operators outside the building
premises, e.g. the ‘‘feeder’’ agent. Based on the information
received, it tunes up the PSO which defines the control variable
values for the comfort systems.

• Zone agent: It is responsible for the floor operation and the
rooms within the floor. The zone agent acts as an aggregator of
the room information, monitoring the local zone and informing
BEMS agent if the current status iswithin the parameters or not.

• Room agent: It is placed at local zone, i.e. room level, and take
charge of the operation of the room within the building. It
is responsible for gathering information to assess the comfort
levels and determine the building flexibility.

• Comfort agent: It is located at the same level with the zone
agent but aims for centralized systems, i.e. heat pump and
HVAC. These systems are usually comfort systems designed to
operate for larger parts of the building or even for the whole
building,

The proposed dual agent-based platform tries to control the
voltage variation in a feeder, by influencing the active power de-
mand of the smart building. However, depending on the building
comfort status, the MAS-BEMS has autonomy to choose whether
it modifies its behavior or not. If so, this is done by changing the
weight value,W , used in the PSO, see (16). The PSO and its param-
eters are then deployed by the BEMS agent based on the informa-
tion gathered from the zone agents and the requests made from
the feeder agent.

Although the agent structure is formed in a hierarchical way,
each agent has the autonomy to operate the local environment.
For instance, the zone agents in the MAS-BEMs platform have
the autonomy to switch off local energy systems, e.g. lights,
based on occupancy information. Furthermore, the comfort level is
controlled by the comfort agent for thewhole building but the zone
agents have still the autonomy to correct deviation through the
operation of heating and ventilation valves. The advantages of this
hierarchical MAS system are about minimizing communication
effort by sharing relevant information to interested agents and
scalability of the structure.

5. Modeling and simulation

5.1. Modeling a test system

A test system has been developed including a distribution grid,
household loads, building’s offices loads, as well as agent-based
control systems. Fig. 3 shows a general description of the voltage
support methodology. At every time step, the comfort levels,
energy demand, and voltage at the point of connection ismeasured
at each smart building. Based on themeasured voltage, theMAS-SG
system creates a request in order to improve the voltage profile of
the feeder. Simultaneously, each BEMS agent runs a PSO to obtain
the optimal operation parameters of the comfort systems, i.e. v̇s,
v̇s,h and v̇r . This optimization step is based on the current building’s
comfort value and on the feeder agent’s request. The resulting
parameters give the optimal relation between energy demand and
comfort for the next time step, in such away that the voltage profile
is improved at the building’s point of connection. The following
subsections describe in detail about each component model of the
test system.

5.1.1. Modeling a distribution grid model
Modeling of the distribution grid and the building’s offices is

implemented in Matlab/Simulink. The LV distribution feeder is
modeled bymeans of the SimPowerSystem toolbox. It represents a
three-phase balanced system formed by a total of ten loads. These
loads are equally distributed over the length of 1000 m, as shown
in Fig. 4, with an X/R ratio of 0.0423. Among these ten loads, eight
loads correspond to non-flexible loads and are implemented using
the load profiles displayed in Fig. 5. Six of these eight loads are
household loads. Their load profile is based on measured data at
the beginning point of one feeder of a typical Dutch LV network
with 74 customers and a length of about 300m. The other two non-
flexible loads correspond to a typical Dutch office, which is based
on measured data at the point of connection of a typical 3-floor
office building.

The remaining two loads represent two double-floor smart
buildings, controlled by a MAS-BEMS. Using the Simscape toolbox,
the physical modeling of the thermal behavior of the buildings is
implemented bymeans of convection and conduction heat transfer
mechanisms. This model provides the energy needs for comfort
and energy demand, i.e. heat losses compensation. The HVAC, heat
pump and electrical devices are implemented in Matlab/Simulink
according to the formulations described in Sections 2.2.1 and 2.2.2.
For each building, PSO is used to determine the optimal operation
parameters, i.e. v̇s, v̇r , v̇s,h, of the comfort systems, as described in
Section 3.1.

5.1.2. Modeling dual agent-based control system
The agent-based control system is implemented in JADE, a plat-

form that provides a java environment for the behavior of agents.
A TCP/IP communication is established between the two soft-
ware platforms, with Matlab/Simulink as the server client. The
system response is simulated in seconds, whereas the MAS based
SG–BEMS and the optimization is done in 15 min intervals.5 The

5 This interval corresponds to the PTU, (Program Time Unit) period adopted by
the Dutch transmission system operator TenneT, for scheduling and settlement of
the electricity market participants. However, it can be extended to different time
horizons.
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Fig. 5. Non-flexible load profiles.

environment parameters, i.e. temperature, relative humidity, CO2
concentration, occupancy, power consumption, of each zone of the
building; and the positive sequence voltage at three different loca-
tions6 of the feeder are exchanged between the Matlab/Simulink
model and the JADE agents.

Between the JADE agents, multiple ACL (Agent Communication
Language) messages are exchanged. These messages contain the
necessary information for the zone, BEMS, and feeder agents to
take the adequate control decisions, and for the zone and comfort
agents to control the environment. For this particular case of study,
each building is formed by 5 different zones and 2 centralized
comfort systems. In total there are 33 agents monitoring each
smart building. This means that in total in the SG–BEMS platform,
there are 67 agents interacting every 900 s.

5.1.3. Modeling occupancy level
As mentioned, a building’s main function is comfort manage-

ment with the main decision variable related to the occupancy.
During off-work times, the room agents will shut down the electri-
cal flexible loads if the occupancy level in that room is zero. Via the
zone agent, information is forwarded to the BEMS agent to reduce
the operation of theHVAC andheating systems, through communi-
cationwith the comfort agents. As people are detected in any zone,
the decision variables become the temperature, relative humidity,
and CO2 concentration levels, and the flexible loads are allowed to
work.

Different occupancy profiles were used for each of the zones in
the floor. Each zone has an average number of occupants with a
random variation in time, as expressed in the following equation:

N =


0 if tout ≤ t ≤ tin
Nav + rand if tin < t < tout

(20)

where, N is the number of people, Nav is the average number
of occupants, rand represents a random variation in time, tin the
arrival time, randomly selected between 7 am and 9 am, and tout
the leaving time, also randomly selected between 4 pm and 7 pm.

Finally, the energy demand is also weather dependent. The
models use measured weather data of a typical winter day in the
Netherlands.

5.2. Simulation results

Simulations are run for a 24-h periodwith assessments for three
different scenarios as follows:

• Bias scenario: Minimizing energy consumption has a higher
priority in the building optimization problem, assuming ‘‘W =

0.3’’.

6 These positions correspond to the beginning of the feeder and to each smart
building connection point.
Fig. 6. Total load demand of the feeder.

• Fair scenario: Comfort level and energy consumption are
equally weighted in the building optimization, leading to ‘‘W =

0.5’’.
• Dynamic scenario: The building behavior is affected by the

feeder agent’s requests based on the voltage variations.

In the first two scenarios, the grid’s requests are ignored and
the MAS-BEMS platform operates only towards its own objectives.
This aims to highlight the effects of the SG–BEMS inter-operation
framework in the dynamic scenario. Furthermore, based on initial
simulations, the acceptable voltage ranges are specified for the
three voltage measuring points. For instance, at the first smart
building’s connection point the admissible range is 1 p.u. ±

2%, whereas at the second smart building connection point, the
admissible range is 1 p.u. ± 3%.

Numerical results have been obtained from the simulation and
will be discussed in each specific aspect as follows:

5.2.1. Energy consumption and comfort
Fig. 6 shows the total active power demand of the feeder for

each scenario, including the non-flexible loads profile and the
smart building power demand. The load profile in the dynamic sce-
nario shows stepwise characteristics during the operating time of
the buildings. This behavior is the result of the dynamic adjustment
of the PSO weight, i.e. ∀ W ∈ [0.3 0.7], depending on the feeder
agent requests. The fair scenario results in the highest energy con-
sumption, while the bias one results in lowest energy demand but
causing also lower comfort levels, as it will be discussed next.

Fig. 7 shows the load profile of the two smart buildings, while
Fig. 8 shows the degree of comfort satisfaction in each building as
described in (2). Different occupancy functions are used for each
building, resulting in slightly different energy profiles obtained for
the three scenarios defined. Relative comparison of three scenarios
for building’s energy consumptions is similar to the observation at
the feeder level. Both buildings show similar demand and comfort
profiles. While the fair scenario results in the highest comfort
levels and the highest energy demand, the bias scenario results in
the lowest comfort levels as well as the lowest energy demand.
However, the dynamic scenario shows a fair comfort level, and
energydemandboundedby thedemandof the other two scenarios.

5.2.2. Impact on voltage levels
Fig. 9, Fig. 10, and Fig. 11 show the feeder’s voltage profile over

time for each scenario previously defined. As illustrated, during the
time in which the buildings are empty the three profiles are quite
similar. This is mainly because, while there are no occupants the
PSO is giving energy a higher weight. However, during the operat-
ing time of the buildings, differences are appreciated between the
three scenarios. Fig. 9 shows the operation of the building with-
out offering grid support. It results in an optimal comfort profile as
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Fig. 7. Building energy demand.

Fig. 8. Building comfort profiles.

shown in Fig. 8. As comfort is not scarified, despite being efficient,
it is the scenario with the higher energy consumption. This in turn
means a lower voltage profile for the feeder. As expected, the bias
scenario, Fig. 10, shows the highest voltage profile. However, Fig. 8
shows that this scenario also represents the worst comfort levels
in the building, which makes it undesirable. Finally, Fig. 11, shows
the operation of the SG–BEMS agent based system. This dynamic
scenario shows a switching behavior in the voltage profile. Similar
behavior is seen in Figs. 7 and 8. As the agent feeder detects the
voltage going lower than specified it sends a request to the build-
ing. Depending on the comfort value, the building decides whether
to accept the request or not. If so, the SG–BEMS changes theweight
in the PSO block, resulting in a lower power demand. However, this
also means a decrease in the satisfaction perception, as shown in
Fig. 8. Despite the fact that this switching behavior might not be
Fig. 9. LV feeder voltage profile for the fair scenarioW = 0.5.

Fig. 10. LV feeder voltage profile for the bias scenario W = 0.3.

Fig. 11. LV feeder voltage profilewith the SG–BEMSplatform, i.e. dynamic scenario.

preferred over a steady voltage profile, in reality the switching will
not happen all at the same moment in time, so the resulting volt-
age profile will be much smoother. Furthermore, in this case, the
frequency of the variation is not sufficient to be considered a rapid
voltage variation, and the change inmagnitude is not big enough to
be considered a slow voltage variation. Thus, not sufficient to cre-
ate flicker problems, or problems in the operation of the consumer
devices, and therefore admissible for network operation [30,31].

Fig. 12 shows a voltage swell scenario, during the time in which
the building is no longer operating. As appreciated the voltage
swell is decreased in a small amount by the action of a single
building. Despite being a small improvement, this energy, through
thermal or electrical storage, could be used to further enhance the
building operation during the next day. As the control of more
loads is combined into a single coordinated action, the support and
flexibility offered to the distribution system could be significantly
improved.

Finally, Fig. 13 shows the PSO results, i.e. v̇s, v̇r , v̇s,h, for the
second building. As can be seen, the PSO adjusts the behavior of the
comfort systems, by adjusting the required volumetric flow rates
of the HVAC and heat pump. However, due to the stochastic nature
of the PSO technique it cannot be ensured that the solution found
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Fig. 12. Voltage magnitude at the end of the feeder during a voltage swell.

Fig. 13. Comfort system operation parameters.

each time is always a global optimum. Nonetheless, by having a
sufficient number of iterations, and by monitoring the change in
the movement of the particles, it can be ensured that the search
domain has been well explored.

6. Conclusions

In this paper, a dual agent-based management system for the
inter-operation of the smart grid and smart buildings is proposed.
The abilities and benefits of this distributed control architecture
are tested through virtual multi-zone buildings connected to a LV
distribution feeder. It is shown that with the use of basic operation
rules, the proposed system can effectively improve the voltage
profile of the feeder, while ensuring acceptable comfort levels.
Furthermore, the bottom-up architecture proposed guarantees
that the information is treated in hierarchies reducing the flow
of unnecessary information, which will become critical in larger
systems.

Furthermore, an optimization strategywas presented for build-
ing energy management systems, which optimizes both energy
and comfort in a zone. A dynamic weight PSO was compared
against two constant weight scenarios, i.e. fair with ‘‘W = 0.5’’,
and bias with ‘‘W = 0.3’’. From the results obtained, it can be con-
cluded that the PSO algorithm offers great potential not only for
energy savings and comfort optimization, but also for voltage grid
support. In thiswork, theweight value in the dynamic scenariowas
changed based on the detection of occupancy aswell as the voltage
levels at the feeder. From the results it can be concluded that the
combination of distributed intelligence with innovative optimiza-
tion techniques offers not only benefits for both domains but also
allows the inter-operation of them.

Finally, as the MAS based SG–BEMS platform is designed in the
context of a balanced LV network, its functionalities need to be fur-
ther developed in order to offer voltage support in an unbalanced
system. In such systems, the power variation needs to be differen-
tiated by phase in order to contribute to the voltage/current sym-
metry between thephases, i.e. voltage balance. Thiswill require the
aggregation and control of the single phase connected loads, and of
single phase devices present within the building. However, large
office buildings comfort systems, e.g. HVAC, are typically three
phase loads, and their control will result in an equal demand vari-
ation over all the phases. This means that if the SG–BEMS platform
is used to control only the three-phase loads, it will influence only
the positive sequence voltage. This leads to very little change in the
voltage unbalance level. Nonetheless, there is always some degree
of unbalance in a network, but this is not a frequent issue, i.e. in
some areas unbalance up to 3% is allowed, as indicated in the EN
50160 standard (the limit differs per country, e.g. 2% is the limit in
the Netherlands).
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