

KABEL 2016

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid

<u>Dr. Bartłomiej Arendarski</u>, Dr. Przemysław Komarnicki, Prof. Zbigniew Styczynski Fraunhofer Institute for Factory Operation and Automation IFF

Krynica-Zdrój, 16.03.2016

Spis treści

- 1. Sytuacja wyjściowa \rightarrow Smart Grid
- 2. Niezawodność dostaw energii statystyki
- 3. Czterokrokowy algorytm obliczania niezawodności Smart Grid
- 4. Symulacje i praktyczna realizacja
- 5. Podsumowanie

Sytuacja wyjściowa → Smart Grid

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid B. Arendarski, KABEL 16.03.2016 © Fraunhofer IFF

sieci

Koncept inteligentnych sieci elektroenergetycznych

Architektura teleinformatyczna oparta na standardach Smart Grid

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid B. Arendarski, KABEL 16.03.2016

Praktyczna implementacja systemu monitorowania

Widoczna tendencja profilu napięcia 110 kV na poziomie 10 kV

Różnica kąta fazowego między rzeczywistymi pomiarami i symulacją – możliwość wykrycia niesynchronizacji systemu

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid B. Arendarski, KABEL 16.03.2016 © Fraunhofer IFF

System monitorowania i kontroli obszaru dystrybucji

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid

B. Arendarski, KABEL 16.03.2016

Niezawodność dostaw energii

- Jakość zasilania elektrycznego
 - Funkcjonalność
 - Utrzymanie
 - Gotowość do działań naprawczych
- Konzept niezawodności Smart Grid

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid

B. Arendarski, KABEL 16.03.2016

Czynnki wpływające na niezawodność

Błędy zewnętrzne

- burze, uderzenia pioruna
- terroryzm
- wiatry słoneczne (elektromagnetyczne lub burze geomagnetyczne)
- Błędy planowania i projektowania
 - niewystarczające wymiarowanie
 - nieoptymalna topologia systemu
 - nieprawidłowego ustawienia zabezpieczeń
- Błędy operacyjne
 - przeciążone urządzenia
 - zwarcia spowodowane niewłaściwą obsługą
 - przepięcia łączeniowe
 - błędne decyzje w centrum kontroli

Niezawodności zasilania - Statystyki

32,59

15,32

Niedostępność w Niemczech w latach 2006-2013 [1]

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid B. Arendarski, KABEL 16.03.2016

Τu

Q_U

[min]

[min/a]

© Fraunhofer IFF

9

Czas przerwy

Niedostępność

Czterokrokowy algorytm obliczania niezawodności SG

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid

Fraunhofer

© Fraunhofer IFF

B. Arendarski, KABEL 16.03.2016

Infrastruktury sprzężone – modelowanie zależności Teoria Sieci Złożonej Krok1

- Węzły elementy systemu takie jak węzły sieci, routery
- Krawędzie połączenia lub związki między węzłami, np. linie energetyczne, połączenia komunikacyjne
- G (V, E), gdzie V = { $v_1, v_2, ..., v_n$ }, E = { $e_1, e_2, ..., e_m$ }

v – vertices / węzły e – edges / krawędzie

Rodzaje połączeń:

11

Typ 1: między dwoma węzłami elektrycznymi *Typ 2:* między dwoma węzłami ICT *Typ 3:* od węzła elektrycznego do węzła ICT *Typ 4:* od węzła ICT do węzła elektrycznego

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid B. Arendarski, KABEL 16.03.2016 © Fraunhofer IFF

Obliczanie niezawodności Krok2

Dostępność:
$$A = \frac{\mu}{\lambda + \mu} = \frac{\sum [\text{czas działania}]}{\sum [\text{czas przestoju}] + \sum [\text{ czas działania}]}$$

■ Niedostępność:
$$U = \frac{\lambda}{\lambda + \mu} = \frac{\sum [\text{ czas przestoju}]}{\sum [\text{ czas przestoju}] + \sum [\text{ czas działania}]}$$

TTR - time to repair

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid B. Arendarski, KABEL 16.03.2016

μ - oczekiwany wskaźnik naprawy

Numeryczna niezawodność komponentów ICT oraz EES Krok 2

A [%]	U [%]	Źródło
99,8200	0,18	[4]
99,9940	0,0060	G650 Media
99,9997	0,0003	Cisco
99,9978	0,0022	HFC
99,7946	0,2054	[5]
99,9974	0,0026	[5]
99,9998	0,0002	[6]

MTTR - mean time to repair/replace A - Availability MTTF - mean time to failure U - Unavailability

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid

B. Arendarski, KABEL 16.03.2016

Symulacja niezawodności - Monte Carlo Krok 3

14

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid

B. Arendarski, KABEL 16.03.2016

Symulacja niezawodności - Monte Carlo Krok 3

15

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid

B. Arendarski, KABEL 16.03.2016

Obszar dystrybucji 110kV

- 43 węzły elektryczne,
- 37 linie
- Koncepcja ICT
 - 26 PMU,
 - 18 Router,
 - 18 PC,

- 1 Gateway, baza danych
- Parametry wejściowe symulacji
 - Czas trwania T = 50 lat
 - Długość każdej sekwencji= 8760h
 - Uwzględnienie odległości między obciążeniem i lokalizacją uszkodzenia
 - Wpływ generacji OZE

Wyniki symulacji – sieć 43 węzłowa Krok 4 SAIDI

Index	EES	SG	
SAIDI Std./Jahr	3.8580	2.4855	
CAIDI Std./Ausf.	10.3903	6.7234	
ASAI %	99.9560	99.9716	
EENS MWh/Jahr	0.0675	0.0405	

SAIDI - System average interruption duration index

CAIDI – Customer Average Interruption Duration Index

ASAI - Average system availability index

EENS - Expected energy not supplied

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid B. Arendarski, KABEL 16.03.2016

17

💹 Fraunhofer

Posumowanie i perspektywy

- Rozwój sieci elektroenergetycznych i zwiększone wykorzystanie ICT wymaga nowych metod planowania i obliczania niezawodności systemu
- Algorytm oceny niezawodności inteligentnych sieci

 \rightarrow Poprawa niezawodności Smart Grid

Perspektywy

- Integracja sterowania i ochrony sieci inteligentnych
- Systemy komunikacyjne o różnej jakości QoS
- Integracja innych infrastruktur (gaz, ciepło)

Dziękuję za uwagę!

	Fraunhofer Institute for Factory Operation and Automation		Fraunhofer Institute for Factory Operation and Automation
Dr. Bartlomiej Arendarski	Sandtorstr. 22 39106 Magdeburg, Germany Phone 149 391 4090 – 145	Dr. Przemyslaw Komarnicki	Sandtorstr. 22 39106 Magdeburg, Germany Phone + 49 391 4090 – 373
Project Manager	Fax +49 391 4090 – 370	Deputy Business Unit	Fax +49 391 4090 – 93373
Process and Plant Engineering	bartlomiej.arendarski@iff. fraunhofer.de www.iff.fraunhofer.de	Manager Process and Plant Engineering	komarn@iff.fraunhofer.de www.iff.fraunhofer.de

Ocena niezawodności elektroenergetyki i teleinformatyki w Smart Grid

B. Arendarski, KABEL 16.03.2016

© Fraunhofer IFF

Literatura

- [1] CEER Council of European Energy Regulators; Benchmarking Report 5.2 on the Continuity of Electricity Supply; 12 February 2015
- [2] J. Sanchez, R. Caire, N. HadjSaid, "ICT and Electric Power Systems Interdependencies Modeling", Internationaler ETG-Kongress in Berlin, 11.2013
- [3] Common Reliability Distributions, Alion Science and Technology, System Reliability Center, New York, 2001
- [4] P. Zhang, K. Chan, "Reliability Evaluation of Phasor Measurement Unit Using Monte Carlo Dynamic Fault Tree Method", IEEE Transactions On Smart Grid, Vol. 3, No.3, 09.2012
- [5] IEEE Std 493[™]-2007: IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems, New York, 2007
- [6] "Verfügbarkeit des Netzanschlusses von Kraftwerken" in Fachausschuss der DVG, 23.07.1980

